海马是脑片膜片钳实验理想的标本

2023-07-29

       Yamamoto和McIlwain在1966年首次在脑片上记录了电生理活动(1966a, b),证实了脑组织在体外也能存活,并保持很好的活性状态。此后,该方法在生理学研究中的应用越来越广泛,并为中枢神经系统生理和药理学领域突飞猛进的发展奠定了基础。1989年,Blanton将脑片电生理记录与细胞的膜片钳记录结合起来,建立了脑片膜片钳记录技术,这为在细胞水平研究中枢神经系统离子通道或受体在神经环路中的生理和药理学作用及其机制提供了可能性。


       在脑片电生理记录中,实验者可以按不同的实验目的直接准确地改变脑片灌流液的成份和条件,如温度、酸度和渗透压、通氧状态、以及离子通道或细胞信号转导通路的阻断剂等;另外,实验者还能借助显微镜准确地放置记录电极和刺激电极,同时,可借助一些特殊的加药装置,将一定浓度的药物加到整个脑片或是脑片上的特定区域上,研究电信号沿神经环路的传递规律。在电生理学实验结束后,活性较好的脑片还可用于生物化学或解剖学的分析。这些优点使实验者能获得准确的神经生理学的研究结果,也是其应用较在位大脑广泛的原因所在。


       海马脑片是中枢神经系统研究中应用最为广泛标本之一。其原因有以下几点:


1、海马与脑的其它部位相对隔离,较易剥离,且剥离后受到的损伤较小;

2、海马具有高度分化的片层结构,一方面,海马神经环路在片层中的分布有一定的空间规律,如锥体细胞胞体分布在锥体细胞层,而雪氏侧支突触分布于辐射层,且海马中存在一个三突触联系的回路,即穿通纤维-齿状回颗粒细胞层、苔状纤维-CA3区锥体细胞层、雪氏侧支-CA1区锥体细胞层等,因此,在海马中可以较准确地记录到特定神经元或突触的反应;另一方面,这种板层结构有利于解释在某一部位记录到的细胞外场电位的意义。这些都使海马成为电生理学研究的理想标本。

推荐

  • QQ空间

  • 新浪微博

  • 人人网

  • 豆瓣

收起

取消
  • 首页
  • 电话
  • 位置